

THE OFFICE OF THE STATE CHIEF INFORMATION OFFICER
ENTERPRISE TECHNOLOGY STRATEGIES
North Carolina Statewide Technical Architecture

Domain White Paper
System Integration Architecture Technology

Overview

S T A T E W I D E T E C H N I C A L A R C H I T E C T U R E

S T A T E W I D E T E C H N I C A L A R C H I T E C T U R E

Domain White Paper:
System Integration Architecture

Technology Overview

Initial Release Date: August 1, 2003 Version: 1.0.0
Revision Approved Date: Not Applicable
Date of Last Review: March 11, 2004 Version: 1.0.1
Date Retired:
Architecture Interdependencies:
Reviewer Notes: Reviewed and updated office title and copyright date. Added a hyperlink
for the ETS email – March 11, 2004.

 2004 State of North Carolina
Office of the State Chief Information Officer

Enterprise Technology Strategies
 PO Box 17209

 Raleigh, North Carolina 27699-7209
 Telephone (919) 981-5510

ets@ncmail.net

All rights reserved. No part of the material protected by this copyright notice may be reproduced or utilized in any
form or by any means, electronic or mechanical, including photocopying, recording or by any informational storage

system without written permission from the copyright owner.

 1

mailto:ets@ncmail.net

S T A T E W I D E T E C H N I C A L A R C H I T E C T U R E

Mission Statement
System Integration Architecture facilitates and simplifies communication within and between heterogeneous,
distributed application systems.

Note: The System Integration Domain represents the incorporation of three previous chapters: Application
Communication Middleware, Middleware, and Integration. The new consolidated domain will be revised
in the near future to reflect the technical changes in the three chapters previously mentioned.

As the state moves to a distributed infrastructure, multiple applications must be
able to exchange data across complex, heterogeneous environments; therefore, the
state's technical infrastructure must be able to deliver pertinent information at the
right place and time and in a useful format. In today's fast-paced and ever-changing
environment, program-to-program is essential for departments to improve
operations, offer better and new services, and reduce costs. Application
communication middleware facilitates interchange of information in a distributed,
multi-vendor, and heterogeneous systems environment while providing the same
levels of security, reliability, and manageability traditionally associated with a
monolithic, mainframe-based architecture where all products are supplied by a
single vendor.

Middleware is an overused term in industry today; it seems that everything is some
type of middleware. Middleware insulates application developers from having to
understand the complexities of the computing environment. To programmers,
middleware is a "black box," where understanding the details of what happens
inside is not required. Just as high-level programming languages, such as COBOL,
FORTRAN, and C insulate programmers from platform architecture, application
communication middleware insulates programmers from the complexities of the
communication architecture, such as network protocols.

There are two areas that require application communication middleware:

Intra-application. Handles communication within the tiers of an application system.

Inter-application. Handles communication between the application system and
external services, such as common shared services and other application systems.
(For more information on common shared services, refer to the Componentware
Architecture chapter).

Both inter-application and intra-application communication middleware provide
benefits:

 2

S T A T E W I D E T E C H N I C A L A R C H I T E C T U R E

Adaptability. The underlying components of the technical infrastructure (such as
operating systems, databases, and hardware platforms) can be expanded or changed
without having to modify the application systems that are supported by the
infrastructure.

Reduced development time. The logical partitioning of an N-tiered system and the
modularity of construction using common services offer efficiencies through the
specialization of skills and the reusability of components. These practices will
improve the quality of systems and reduce lead times for their implementation and
modification.

Flexibility. The features and capabilities of applications can be modified (i.e., they
are scaleable and expandable) without changing the foundation technical
architecture.

Reduced costs. The opportunities for selecting products from different vendors are
enhanced by the integration capabilities offered by middleware; therefore, greater
competition will improve price offerings.

Intra-Application Communication Middleware

The Application Architecture explains how N-tier applications are divided into
multiple tiers. (See Figure Below.) Intra-application communication middleware
enables the tiers to communicate within an application system.

 3

http://irm.state.nc.us/techarch/chaps/chap6-1.gif

S T A T E W I D E T E C H N I C A L A R C H I T E C T U R E

Figure 1. Communication between Application Tiers.

The logical tiers within a single application system often reside on different physical
machines. Since the application tiers can reside on different platforms and physical
machines, there needs to be communication and coordination among the logical
tiers. Intra-application communication middleware simplifies the complexities
associated with developing and deploying applications in a distributed,
heterogeneous environment.

Inter-Application Communication Middleware

In addition to the communication requirements within an application system, inter-
application communication middleware is required for communicating externally
with services outside of an application system. Inter-application communication
middleware facilitates the access to other application systems or common business
services. Through inter-application communication middleware, applications can
locate and interact with other applications or services on the network in a reliable
and scaleable manner. (See Figure Below).

 4

S T A T E W I D E T E C H N I C A L A R C H I T E C T U R E

Figure 2. Inter-application Middleware

Benefits of Application Communication Middleware

Application communication middleware is the cornerstone of the state's application
architecture. It must:

Maximize Flexibility in Managing Technical Infrastructure

Changes to the underlying state technical infrastructure must remain
transparent to application programmers. This model permits changing the
state's technical infrastructure (including middleware) with little or no
modification to the supported applications. The model incorporating inter-
application communication is called a "broker." A broker simplifies
communication external to the application and insulates the underlying
infrastructure. Source code does not have to change in response to changes in
services or infrastructure. (See Figure Below).

 5

S T A T E W I D E T E C H N I C A L A R C H I T E C T U R E

Figure 3. The Role of a Broker

As illustrated in Figure Above, user authentication is a sample core service needed
by many applications. Today, application developers code an "Authenticate User"
service in each application requesting user name and password information. Each
"Authenticate User" service is application specific and is implemented to support
the security system on the platform where the application runs. If a generic broker
was used for the "Authenticate User" service, a common statewide authentication
service can be provided. The application developer would only need a single
security interface and would not need to know product-specific security
information. In this way, the state can manage its technical infrastructure with

 6

S T A T E W I D E T E C H N I C A L A R C H I T E C T U R E

minimal, if any, impact on application developers. Expertise on specialized
products, such as security, no longer is required of every application developer.

The use of a broker can facilitate timely implementation of legislation. For example,
recent federal legislation required states to allow citizens to update their voter
registration at the same time they apply for government services, such as a driver's
license or unemployment benefits. If a broker had been in place at the time of the
legislation, the change in legislation would have been far less complicated to
implement. A broker would have prevented each agency's application developers
from having to learn or build custom interfaces to the voter registration application
system. A broker providing a common, consistent method of communication can
streamline inter-application communication.

Minimize Complexity to Application Developers

Since much of the functionality in new applications will be provided by calling pre-
written and pre-tested software services, such as "Compute Age," the services need
to be easy to access. (For more information on reusable components, refer to the
Componentware Architecture chapter). As software services, (e.g., "Compute
Age"), become available and are documented in the component repository, they are
available for application use through inter-application communication middleware.
Application developers would call the "Compute Age" service when they needed
that function, instead of developing and testing their own "Compute Age" function
within their application.

Application systems also need the capability to communicate with other
applications. Application systems within the same agency or even from different
agencies may find that there is a need to interoperate to exchange information or
services (e.g., the earlier example about federal legislation regarding voter
registration. The legislation affected multiple agencies and application systems
across the state).

Maximize Selection Availability of Development Tools

Unfortunately, there is no simple middleware solution that meets both intra- and
inter-application communication needs; there is not a single communication
paradigm. Since there are multiple methods of communication, a match must be
made between the problem being solved and the type of middleware required.
Selecting the right middleware product is not easy because there are no industry
standards, and most middleware is proprietary. When proprietary solutions are
used, interoperability is usually limited.

Often, middleware software is included with integrated development tools.
Integrated CASE tool vendors and front end/back end tool vendors currently use

 7

S T A T E W I D E T E C H N I C A L A R C H I T E C T U R E

this approach. (For more information on development tools, refer to the
Application Architecture chapter). The development tool vendor usually supplies its
own proprietary application communication middleware. Development tools can
also support third-party proprietary application communication middleware in
addition to the proprietary middleware.

Applications developed in one development tool may not be able to easily
communicate with applications developed in another tool. Standardizing on an
application development tool and its associated communication middleware
infrastructure will circumvent this problem.

If proprietary middleware interfaces are included in application systems, changes to
the middleware infrastructure are impossible without also changing the applications.
To minimize the risk of incompatible communications, third-party proprietary
application communication middleware supported by a variety of tools should be
selected. Third party middleware also permits some flexibility in selecting
application development tools.

Selecting middleware within an application system poses much less risk for the state
than selecting middleware for inter-application communication. Intra-application
communication, used to communicate between the different tiers within an
application system, only requires consistency within the same system. Therefore,
there is no need for the statewide technical architecture to specify particular
development tools or middleware for intra-application communication.

However, communicating between application systems is not the same as within an
application system; a consistent solution for inter-application communication
would greatly benefit the state. In addition to providing application developers with
a single, consistent interface for inter-process communication, the underlying
infrastructure can be isolated and more easily managed. One of the most important
design principles for the technical architecture is that it must provide the flexibility
for changes in technical structure to respond to changing technology in a cost-
effective manner.

Integration Architecture
Mission Statement

Integration Architecture specifies how various automated applications operating on different platforms can
effectively work together. Integration techniques should be used when new application systems need to access
existing application systems, while maximizing the investment in existing systems and platforms. This
chapter includes an introduction of integration, an explanation of data access techniques, application and
3270 terminal integration, and recommendations and standards for each component.

 8

S T A T E W I D E T E C H N I C A L A R C H I T E C T U R E

The state is in the process of optimizing applications and platforms so that
application systems execute in a cost-effective manner and with performance and
usage optimized. In doing so, the state is also faced with the challenge of integrating
the new optimized client/server systems with established mainframe-based legacy
systems and purchased software. Integration is the key to bridging the gap between
heterogeneous operational application systems while still maximizing the
investment in existing hardware and client platforms.

Integrating new client/server, adaptive, and distributed systems with existing
systems while still optimizing performance, minimizing maintenance and utilizing
existing platforms is a major technical challenge. When new client/server systems
are developed, they need the ability to access the business processes and data from
legacy and purchased systems developed under different technical architectures.

Integration is much easier when all of the applications are built on the same
platform under the same standards. When applications do not use a common
database management system (DBMS), data models or semantics, it becomes more
difficult to integrate new systems with these applications. Many legacy application
systems currently used by state agencies were developed independently using a wide
variety of formats and designs because no enterprise standards were in place when
the applications were developed. The state has also purchased vendor packages that
need to be accessed by both legacy and new systems. Purchased software
historically does not conform to state standards, especially relating to DBMS
models and semantics. The integration strategy accommodates the coordination of
legacy mainframe applications, purchased application packages, and newly
developed N-tier client/server applications so they can work together.

An integration strategy can be implemented several ways, including:

Implicit integration. Exists from the end user perspective (e.g., the propagation of a
change in address throughout multiple application systems). In the background, the
systems are integrated through integration techniques that duplicate the processing,
data transmission and data storage across all the application systems. The end users
think that it is all one system even though it is not.

Explicit integration. When the application systems are tightly linked so that the
processing, data transmission and data storage occurs only once (e.g., the address is
stored in only one location for all systems). New application systems are usually
designed this way. Explicit integration is further discussed in the Application
Architecture chapter.

• Generally, enterprises integrate applications through a wide variety of
solutions:

• Custom extract programs, transfer files and import programs.

 9

S T A T E W I D E T E C H N I C A L A R C H I T E C T U R E

• Screen-scraping programs.
• Custom-developed interface programs.
• Messaging systems or sockets connections.
• Front-ending multiple applications with a single user interface.
• Aggregation of data from multiple applications into reports and

repositories.

Since there are so many ways to integrate application systems, it can be difficult to
select an integration solution that is best for a particular application need. The
intent of the Integration Architecture is to define the recommended techniques for
integrating heterogeneous application systems and to specify when to implement
each technique. The four primary techniques for integration are application
integration, electronic data interchange, data access integration, and terminal
integration.

Each of the four integration techniques uses a common concept called integration
middleware to let new distributed applications coexist and inter-operate with
purchased application packages and legacy applications and databases. Integration
middleware is the software that provides application connectivity and performs the
data transformation and delivery between multiple application systems and
databases. (See Figure Below)

Figure 4. Integration Middleware Solutions

Each integration technique is summarized below, and all but the Data Access will
be discussed later in this chapter as a technical topic. Data Access Integration is
discussed in Chapter 4: Data Architecture.

 10

http://irm.state.nc.us/techarch/chaps/chap10-2.gif

S T A T E W I D E T E C H N I C A L A R C H I T E C T U R E

Application Integration

Integrates the processing logic or functions from existing systems into new
applications. It allows the state to meet the immediate need for allowing online
transaction processing (OLTP) legacy systems that were not designed to work
together to exchange data and information with other application systems, while
keeping the business logic where it was originally developed. This solution prevents
the duplication of business logic or functions into the new systems and eliminates
the re-keying of data, permitting systems to interact more effectively. An
application integration strategy enables the state to retain its investments in the
existing legacy systems, and it provides the ability to create a consistent set of
platform-independent interfaces that handle common services necessary for
multiple systems to work together. These services include data translation, field
mapping, and transaction explosion.

Electronic Data Interchange (EDI)

Integrates state applications with related applications operated by vendors or other
agencies. Examples of related pairs of applications include purchasing and order
entry, billing and accounts payable, student information systems in two different
schools, and patient records in hospital admissions and lab applications. EDI is a
special case of application integration, since it connects an agency application with
an outside application via industry standard data formats.

Data Access Integration

Integrates data from existing systems into new applications. It provides direct
communication between databases of applications running on multiple platforms
and environments. It improves the usability of existing legacy systems through data
interchange between heterogeneous applications. A data access integration strategy
allows information to be shared across multiple heterogeneous operational
applications without significant impact to the existing technical environment. This
integration technique is discussed in significant detail in Chapter 4: Data
Architecture.

Terminal Integration

Incorporates a terminal access strategy that allows 3270 terminals to connect to
both existing and new client/server applications. 3270 terminals, also known as
"dumb terminals," are an integral element of the statewide enterprise. The
integration need exists because of this large number of 3270 terminals connected to
the legacy SNA network. New applications employ services and user devices that
are connected to the TCP/IP network. Terminal integration will allow the 3270
devices to participate with the new applications that are developed within the

 11

S T A T E W I D E T E C H N I C A L A R C H I T E C T U R E

TCP/IP communications architecture. Moreover, new client/server applications
can be developed and implemented without immediately replacing 3270 terminals.

EDI is a special type of application integration. However, it will be addressed as its
own technical topic in this chapter due to the increased interest in EDI as a cross-
platform, cross-company, and cross-continent communication solution.

Even though the results are similar from the end user perspective, application
integration and data access integration do have inherent differences. Data access
integration encompasses data from multiple sources. Application integration
encompasses both data and business logic.

Application systems are programmatically integrated when they interact through a
program-to-program interface rather than through database-to-database or
program-to-database interface. Application integration is usually preferable to data
integration for integrating heterogeneous operational application systems. (See
Figure Below)

Figure 5. Application Integration vs. Data Access Integration

With application integration techniques applied, the operational databases are
accessed only by their own application programs, so the existing business rules are
always used. Existing operational applications can be updated or changed without
effecting external programs as long as the program-to-program interface remains
consistent.

 12

S T A T E W I D E T E C H N I C A L A R C H I T E C T U R E

 13

With data access integration, queries can be made to application databases
distributed across multiple platforms and database technologies. Database utilities
or purchased and custom-developed programs must be used to offload data to
other applications and users. Data access integration and application integration can
be considered complementary integration tools.

	Mission Statement
	Inter-Application Communication Middleware
	Benefits of Application Communication Middleware
	Maximize Flexibility in Managing Technical Infrastructure
	Minimize Complexity to Application Developers
	Maximize Selection Availability of Development Tools

	Integration Architecture
	Mission Statement
	Application Integration
	Electronic Data Interchange (EDI)
	Data Access Integration
	Terminal Integration

